Chaitanya's Random Pages

December 7, 2019

Coordinates of special points of the 3-4-5 triangle

Filed under: mathematics — ckrao @ 3:40 am

One thing I observed is that the 3-4-5 triangle is rather attractive in solving problems using coordinates. If the vertices are placed at (0,3), (0,0) and (4,0) the following are the coordinates of points and equations of some lines of interest.

Line AC: x/4 + y/3 = 1

Incentre: (1, 1)

Centroid: (4/3, 1)

Circumcentre: (2, 1.5)

Orthocentre: (0, 0)

Nine-point centre: (1, 3/4) (midpoint of the midpoints of AB and BC)

Angle bisectors: y = x, y=-2x +3, y=4/3-x/3

Ex-centres (intersection of internal and external bisectors): (3,- 3), (6, 6), (-2, 2)

3-4-5

Lines joining the excentres (in red above): y=-x, y=x/2 +3, y = 3(x-4)

Altitude to the hypotenuse: y = 4x/3

Euler line: y=3x/4

Foot of altitude to the hypotenuse: (36/25, 48/25) (where x/4 + y/3 = 1 intersects y=4x/3)

Symmedian point (midpoint of the altitude to the hypotenuse [1]): (18/25, 24/25)

Contact points of incircle and triangle: (1,0), (0,1), (8/5, 9/5)

Gergonne point (intersection of Cevians that pass through the contact points of the incircle and triangle = the intersection of y=3-3x and y=1-x/4): (8/11, 9/11)

Nagel point (intersection of Cevians that pass through the contact points of the ex-circles and triangle = the intersection of y=3-x and y=2-x/2: (2,1)

Reference

[1] Weisstein, Eric W. “Symmedian Point.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/SymmedianPoint.html

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: