In an earlier post we saw that some of the index laws fail when the base is negative or zero. Now we shall see what occurs when the allowed values of base and exponent are extended to be complex numbers.
For we can proceed analogously to the real case and define
However what are the exponential and logarithm of a complex number? Last time we defined the logarithm before the exponential and we can do the same here. For complex we can define as as for the real case, but note that this time it is a contour integral along any path from to not including the origin. By allowing the path to wind around the origin any number of times, we find the function is no longer singlevalued. For example if we choose the contour to be the unit circle from +1 to itself in an anticlockwise direction, then the contour may be parametrised by for () and we have
More generally if is a logarithm of , so is where is an integer. Defining for complex to be where is a logarithm of , we have
.
(Note that while .)
Based on these definitions we can show that and in an analogous way to the real case, except that the first equation is to be interpreted as an equality of sets of values rather than individual values. Note that for this reason we have to be careful when adding or subtracting logarithms: for example for complex numbers,
and
Hence we cannot write without paying special attention to the values of . If we want to know when , we can verify that which is only equal to when covers all integers, i.e. if for some nonzero integer :
Now in general,
This will be multivalued if takes on noninteger values, as varies over the integers. It will only be singlevalued if is an integer. For example treated as a complex power, will have two values: and while will take three values. The number will have infinitely many complex values although only one of them is realvalued. Note that through (2) we can work out quantities such as:
 (infinitely many nonreal values!)
 (infinitely many real values!).
Also note from (2) that
One can define the principal value of the logarithm to be that with imaginary part in the interval . Similarly one can define the principal value of the power function as
This gives singlevalued results but they may not be as expected. For example, since , rather than the realvalued root 1. However we can now say , being singlevalued.
We would like to know which of the index laws hold. In the remainder of the post we verify the identities summarised in the following table. The real number case was already treated in this post.
Real numbers  Complex numbers  
Positive real 
Multiplevalued power 
Singlevalued power 

(1)  a subset of  
(2)  a subset of  
(3)  
(4)  
(5)  
(6)  but  and  
(7)  a subset of  
(8) 
Note that in the table, are particular integers chosen to enable equality.
For verifying identity (1) in the multivalued power case we have
while
This shows that the set of values of is a subset of the set of values of . In the singlevalued case,
For identity (2) in the multivalued power case we have
This shows that the set of values of is a subset of the values of . We have the equality if , or for all , which is true if . In the singlevalued case, the integer is chosen so that has imaginary part in the interval .
For identity (3) in the multivalued power case we have
In the singlevalued power case,
Here the value is chosen so that has imaginary part in the interval .
Identity (4) comes from setting in identity (1). Identity (5) results from setting or to 1 in identity (3). Identity (6) results from setting in identity (1) and using identity (4). Finally identities (7) and (8) follow from identities (1) and (3).
The moral of all this is that care is to be taken when applying the index laws to complex numbers (or indeed even when adding logarithms) by virtue of the multivalued nature of the complex logarithm.
Reference
H. Haber, The complex logarithm, exponential and power functions, UC Santa Cruz Physics 116A notes (2011) available at scipp.ucsc.edu/~haber/ph116A/clog_11.pdf
Leave a Reply